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Internet Search Result Probabilities: Heaps’ Law and
Word Associativity*

Jonathan C. Lansey1,2 and Bruce Bukiet1
1Department of Mathematical Sciences, New Jersey Institute of Technology, USA;
2Cognitive and Neural Systems Department, Boston University, USA

ABSTRACT

We study the number of internet search results returned from multi-word queries
based on the number of results returned when each word is searched for individually.
We derive a model to describe search result values for multi-word queries using the
total number of pages indexed by Google and by applying the Zipf power law to the
words per page distribution on the internet and Heaps’ law for unique word counts.
Based on data from 351 word pairs each with exactly one hit when searched for
together, and a Zipf law coefficient determined in other studies, we approximate the
Heaps’ law coefficient for the indexed worldwide web (about 8 billion pages) to be
b¼ 0.52. Previous studies used under 20,000 pages. We demonstrate through examples
how the model can be used to analyse automatically the relatedness of word pairs
assigning each a value we call ‘‘strength of associativity’’. We demonstrate the validity
of our method with word triplets and through two experiments conducted 8 months
apart. We then use our model to compare the index sizes of competing search giants
Yahoo and Google.

INTRODUCTION

With the growth of the internet and the worldwide web there has been a
paradigm shift in the way that people approach researching topics.
Whereas in the previous generation, the first place to look was the card
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catalogue at a library, or in an encyclopaedia, nowadays people are
‘‘Googling’’ some keywords.
Much research has been performed concerning efficient ways for search

engines to crawl, index and rank web pages (Brin & Page, 1998).
However, in this paper, we are interested in understanding the number of
search results returned by sets of words.
We begin by developing a basic model to predict the expected value

and probability distribution for the number of results returned when a
pair of unrelated words is entered into the Google search engine. We then
develop a more realistic model by taking into account large variation in
page size on the internet. The model requires the distribution for the
number of unique words on a web page which we calculate by combining
the Zipf’s law (Zipf, 1932; Adamic & Huberman, 2002) for the
distribution of website text sizes (i.e. the number of words on a
webpage), and Heaps’ law (Heaps, 1978; Beaza-Yates & Ribeiro-Neto,
1999) for vocabulary size in a document of a given length.
To calibrate and test the model, we use data from 351 word pairs that

return exactly one result when submitted to Google (called Google-
whacks, and taken from the website www.googlewhack.com). We also
have employed a computer program (Bukiet, 2005) that automatically
submits the word pairs to Google and returns the number of results for
each word individually and as a pair
Calibrating the model with Googlewhacks allows us to measure the

coefficient b¼ 0.52 for Heaps’ law. Previous studies using the internet
have used text collections with under 20,000 pages (Heaps, 1978; Beaza-
Yates & Ribeiro-Neto, 1999). In this paper, we demonstrate a powerful
method for measuring Heaps’ law quickly for very large libraries; in our
case, approximately 8 billion pages.
We investigate the association of various word pairs, determining a

value we call ‘‘strength of associativity’’ for each pair. We also extend the
model to consider searches with more than two words using the same
Zipf’s law and Heaps’ law parameters determined from pairs, and
provide a sample of results for groups of three words. Our formula for
the expected number of search results includes a parameter for the
current number of pages indexed by the search engine. Data was
collected with two experiments, 8 months apart, over which this ‘‘index
size’’ parameter approximately tripled. The resulting plots are described
well by the model, further demonstrating the validity of our method. We
then compare the index sizes of two competing search giants, Yahoo and

INTERNET SEARCH RESULT PROBABILITIES 41

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
L
a
n
s
e
y
,
 
J
o
n
a
t
h
a
n
 
C
.
]
 
A
t
:
 
0
5
:
5
9
 
2
6
 
F
e
b
r
u
a
r
y
 
2
0
0
9

www.googlewhack.com


Google. Finally we discuss the extent of and reasons for differences
between theoretical and experimental results.

BASIC MODEL (UNIFORM)

Finding the Expected Number of Hits

Let I¼ the number of web pages indexed by Google. If a given word has
A results when searched alone, assuming all pages indexed by Google to
be alike, the probability of the word appearing on any given page is A/I.
The probability for a second word to appear on a page is likewise B/I,
with B equalling the number of results when the second word is searched
for alone. If independence can be assumed, then the probability of a
given page having both of the words will be the product of the individual
probabilities

A

I

B

I
¼ AB

I 2
:

If we wish to ascertain the expected number of results when searching
through the entire index, we multiply the probability for a single page by
the number of pages in the index:

I
AB

I 2
¼ AB

I
¼ R ¼ Expected number of results

AB
1

I
¼ R: ð1Þ

By ‘‘expected results’’ we mean the average number of results when many
words with individual results A, and B are searched for.

Finding the Distribution of Hits

We have so far used the expected results as our theoretical measure, but
to get some quantitative insight into the error, we need to find the
probability distribution of results. Under the assumption that all pages
are equal, we can calculate the probability distribution using combina-
torics. Let p(R) be the probability of there being exactly R pages that
have both the first and second word on the page. To find this probability,
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we first find the total number of ways to arrange the A pages with the first
word on the I pages in our ‘‘internet,’’

I
A

� �
¼ I !

A!ðI� AÞ!

and set this as our sample space. We then find the number of cases where
there are exactly R hits from among all these different arrangements. This
is equal to a product of two factors. The first factor is the number of ways
to arrange R hits among the B pages, or

B
R

� �
¼ B!

R!ðB� RÞ! :

The second factor is the number of different ways to arrange all the
leftover hits from A that were not in R or (A – R). These leftover hits are
not on any of the B pages because the pages where A and B coincide are
defined as a hit, or part of R, and so they can be arranged over (I – B)
pages with the number of total arrangements being

I� B
A� R

� �
¼ ðI� BÞ!
ðA� RÞ!ðI� B� Aþ RÞ! :

The product of these two factors divided by the size of the sample space
(the first number) will give us the probability of a word pair returning R
results:

PðRÞ ¼ B
R

� �
I� B
A� R

� ��
I
A

� �

pðRÞ ¼ B!

R!ðB� RÞ!
ðI� BÞ!

ðA� RÞ!ðI� B� Aþ RÞ!
A!ðI� AÞ!

I !
ð2Þ

pðRÞ ¼ A!B!ðI� BÞ!ðI� AÞ!
I !R !ðA� RÞ!ðB� RÞ!ðI� A� Bþ RÞ! :

This is known as the hypergeometric distribution and is the same formula
used both by Ziegler (2002) and Altmann (1988) in their own linguistic
studies. It can be shown (Weissstein, 1999) that its sum over all valid
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values of R is equal to 1, and that the expectation of this distribution over
all R gives Equation (1),

AB
1

I
¼ R

which confirms our earlier solution for the expected number of results.
Unfortunately these numbers grow large very quickly as A, B, I or R

grow. The formula is impractical even for values of I4 200 while we
would like to scale I to be on the order of 8 billion. We used Stirling’s
approximation (Feller, 1968) to calculate pðRÞ; n! �

ffiffiffiffiffiffi
2p
p

e�nnnþ1=2. But
since the sheer size of the numbers is the problem, only the log of the
Stirling’s approximation was practical for us to use:

logðn!Þ � 1

2
logð2pÞ � nþ ðnþ 1=2Þ logðnÞ:

Thus, the probability of having R pages returned when searching for the
first and second words in an internet of I pages is:

p A;B; Ið Þ ¼ expð Aþ 1=2ð Þ � log Að Þ þ Bþ 1=2ð Þ � log Bð Þ
þ I� Aþ 1=2ð Þ � log I� Að Þ þ I� Bþ 1=2ð Þ � logðI� BÞ
� Iþ 1=2ð Þ � log Ið Þ � Rþ 1=2ð Þ � log Rð Þ � A� Rþ 1=2ð Þ
� log A� Rð Þ � B� Rþ 1=2ð Þ � log B� Rð Þ
� ðIþ R� A� Bþ 1=2Þ � log Iþ R� A� Bð Þ
� 1=2ð Þ � logð2 � pÞÞ:

We will return to this formula in the discussion when we consider the
errors of the more detailed model.

DETAILED MODEL (NON-UNIFORM)

Model Assumptions Taking into Account Variation of Page Sizes

It seems most reasonable to question our initial assumption that all pages
are equal. Since some pages have more words than others, the probability
of finding a result on a given page is not the same for each page. More
results will be returned because words are more likely to be found
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together on the same (lengthier) pages than on shorter pages. This larger
number of results for word pairs should lead to combinations of rarer
words giving Googlewhacks.
If we are to take different page sizes into account, we need to know the

distribution of page sizes on the web. More precisely, since the
probability that a word will be found on a page is proportional to
number of unique words on the page, we need the distribution of unique
words per page for the pages of Google’s index.

Zipf’s Law

A number of studies have shown that many different internet
phenomena, such as file sizes, follow a power law called the Zipf law,
described in detail below (Zipf, 1932; Falutsos, M. et al., 1999). Although
the number of words on a page does not necessarily equate to the size of
the html file it is encoded in, and some of the studies included other
media as well as text, it is reasonable to assume that the number of words
per page distribution follows a Zipf law. Theoretical justification for
Zipf’s law, under assumptions also valid for number of words per web
page, was provided by Huberman (Adamic & Huberman, 2002) and
Downey (2001).
The Zipf law states that the size of the nth largest entry, in our case the

nth largest web page, is proportional to 1/na where often a � 1. As stated
earlier, there are I pages in Google’s index. After ranking the pages in
order from the most words to the least words [1���i���I] let i be the ith
number in that set. Applying the Zipf law:

½#Words=Page�ðiÞ / 1

i a
where a � 1: ð3Þ

Heaps’ Law

We use Heaps’ law to convert total words per page into the number of
unique words per page. When VR(n) is the portion of the vocabulary
VðVR � VÞ represented by the text of size n, i.e. VR(n) is the number of
unique words in a text with n total words, and b is a free parameter
determined empirically, Heaps’ law takes the form shown by
Equation (4):

VRðnÞ / nb: ð4Þ
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Merging Equations (3) and (4) gives Equation (5) for the number of
unique words:

Total unique words on the ith largest page / nb / 1

ia

� �b

/ 1

iab
: ð5Þ

Derivation of Model

Suppose for a particular word there is a single hit. The probability of this
word appearing on page i will be called p(i). Since this is proportional to
the number of unique words on page i, we multiply Equation (5)
by a constant k to obtain Equation (6) for the probability of a hit on this
ith page.

pðiÞ ¼ k

iab
for i 2 ð1 � � � IÞ ð6Þ

Since there is only one hit, the probabilities must sum to one:

XI

1
pðiÞ ¼ 1 ¼

XI

1

k

iab
: ð7Þ

For large I, we can approximate this sum by an integral,

k

Z I

1

1

iab
di ¼ 1:

From this we can find a formula for k in terms of ab and I:

1 ¼ k

Z I

1

1

iab
di ¼ k

I1�ab

1� ab
� 11�ab

1� ab

� �
¼ k

I1�ab � 1

1� ab

k ¼ 1� I1�ab � 1

1� ab
¼ 1� ab

I1�ab � 1
:

Plugging this formula for k into Equation (6) gives Equation (8):

pðiÞ ¼ 1� ab
I1�ab � 1

� �
1

iab
: ð8Þ
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This is an important formula and we will come back to it when we
derive a formula for word triplets. For an index of a million pages, our
integral approximation to find

k ¼ 1� ab
I1�ab � 1

is reasonable; the exact sum of the resulting probabilities is 1.0003.
But how does this probability change when more than one hit occurs in

the index? In other words, if a word has A4 1 results, what is p(A,i).
While it is possible to work this through analytically, it is quite messy and
quickly becomes impractical for moderately large values of I. We will
make an approximation that p(A, i) � A � p(1, i) for A� I. This result
makes intuitive sense. In a two-page index, adding a second hit will
greatly increase probabilities, but one more hit in a vast index will have
little effect on the probability that one of the hits will occur on a
particular page. The chances of the second hit landing on a given page i
will be quite close to p(i), yielding p(2, i) � 2p(1, i). To test this
approximation, we ran a computational model for an index of 100 pages
and a probability distribution of

pðiÞ ¼ k

i1=2
:

Each curve in Figure 1 represents a given page in the index. The y axis
represents the probability of a word being found on a particular page
(largest, fourth-largest, etc.) and the x axis represents the number of hits
for the word. The dashed straight lines represent the linear approxima-
tions for the probabilities of each of the pages. Since the majority of
words we are interested in return orders of magnitude fewer pages than I,
this approximation should be sufficiently accurate for our purposes.
Now we can ask what is the probability of two different words, which

return A and B results respectively, occurring together on the ith largest
page. To find this, we multiply the two probabilities.

ApðiÞ � BpðiÞ ¼ AB � p2ðiÞ ¼ AB � 1� ab
I1�ab � 1

� �2
1

i2ab
:

To find the expected number of results for the whole index, we again
take a sum and approximate it with an integral. With an index of one
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million, this integral approximation underestimates results by 5%, the
error goes down as the index becomes larger:

Z I

1

AB � 1� ab
I1�ab � 1

� �2
1

i2ab
¼ AB � 1� ab

I1�ab � 1

� �2Z I

1

1

i2ab
¼ 1� ab

I1�ab � 1

� �2

I1�2ab � 1

1� 2ab

� �
¼ AB �

ðab� 1Þ2 I2ab � I
� 	

ð2ab� 1Þ Iab � Ið Þ2
¼ R

¼ Expected number of results: ð9Þ

As a check for the new formula, we see that in the limiting case of large
I, and when the Zipf’s law exponent a¼ 0 (a uniform distribution)

Fig. 1. Probability of a word being found on a given page versus the total number of
pages that word is on (Results). Page 1 is the largest and the last page, 100, is the smallest.
This computational experiment verifies that the linear approximation discussed in the text
is reasonable for small values of hits/index size (I).
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Equation (9) reduces to Equation (1) derived in the ‘‘Basic (Uniform)
Model’’ section.

lim
I!1

AB �
ð0� 1Þ2 I0 � I

� 	
ð0� 1Þ I0 � Ið Þ2

" #
¼ lim

I!1
AB � 1� Ið Þ

� 1� Ið Þ2

" #
¼ AB � 1

I
:

Introduction to Googlewhack

To test the model, we introduce an internet game called Googlewhacking
(see, www.googlewhack.com) in which the player submits two English
words into the Google search engine attempting to find exactly one hit.
Biodiversified Snacking, for example, as shown in Figure 2. Table 1 has a
few more select examples of word pairs that were once Googlewhacks.
If the player succeeds, he or she may then submit the word to the

Googlewhack website where the word pair is posted on the ‘‘Whack
Stack’’, thereby leading to the requisite 15 minutes of fame for the

Fig. 2. An example of a Googlewhack.
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successful player.While simply entertainment formost people the ‘‘Whack
Stack’’ provides a unique opportunity to fix our variable for the number of
results. This allows us to easily calibrate the model by choosing a value of
ab that best fits the Googlewhack data. For the numerical part of the
experiment, 500 word pairs were taken from the whack stack and those
that were no longer Googlewhacks weeded out. 351 of the pairs still
returned one result and these were used in the following data analysis.

Results from Googlewhacking

In this section we use Googlewhack results and Equation (9) to
approximate the Zipf and Heaps’ parameter product, ab.
Equation (9) implies that the product AB should remain constant if R

equals a constant; in our case of Googlewhacks, R is one:

AB �
ðab� 1Þ2 I2ab � I

� 	
ð2ab� 1Þ Iab � Ið Þ2

¼ 1:

The values of A � B for the 351 Googlewhacks (which can be found
at http://web.njit.edu/*jcl7/publications/googlewhack.html) formed an
approximate lognormal distribution with a nice peak shown by the
histogram in Figure 3. The solid line is a lognormal distribution with
s¼ 2.01 and m¼ log(932,260,000). We note that tests with searching for
random numbers show that internet quantity of search results returned
for single number queries generally follow an approximately lognormal
distribution. This pattern suggests we should take a geometric mean of
the data in this histogram, or an average of the logarithms of these data
which will be near the peak of the fitted lognormal curve at m. We note
that this solution does not have the status of an adequate model. It would
be worthwhile to determine parameters and set up a proper model for
this in the future.

Table 1. Six examples of old Googlewhacks.

Biodiversified Snacking
Fabulated Marshmellows
Protozoic Spliff
Slipperiest Airscrew
Quintupling Zugzwang
Netherworldly Mugwumps
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The geometric mean of A � B for the 351 Googlewhacks was
932,260,000, which we compare to the uniform distribution’s theoretical
measure (actually, what Google cited as its number of pages indexed at
that time) for this value of 8,058,044,651. We note that 75% of the points
on the curve lie exactly on some lognormal distribution for
1.935s5 2.10 and log(823,900,000)5m5 log(1,054,900,000).
Going back to Equation (9), we can plug in I¼ 8,058,044,651 from

the Google homepage and we can plug in AB¼ 932,260,000 from the
geometric mean of AB:

AB �
ðab� 1Þ2 I2ab � I

� 	
ð2ab� 1Þ Iab � Ið Þ2

¼ 932; 260; 000
ðab� 1Þ2 I2ab � I

� 	
ð2ab� 1Þ Iab � Ið Þ2

¼ 1:

We can find ab with a computer by approximating the zero of the
following equation:

932; 260; 000
ðab� 1Þ2 I2ab � I

� 	
ð2ab� 1Þ Iab � Ið Þ2

� 1 ¼ 0: ð10Þ

We find that ab¼ 0.520, or using the range of 75% accuracy (i.e. varying
AB from 823,900,000 to 1,054,900,000), we find that 0.5145 ab5 0.526.
This result validates our assumptions because Adamic and Huberman

(2002) measured the Zipf law coefficient for their studies of the internet to
be a � 1, putting b nicely within the bounds 0.4 	 b 	 0.6 determined by
Baeza-Yates (Baeza-Yates & Ribeiro-Neto, 1999). If either the Zipf’s or

Fig. 3. This figure plots a lognormal distribution fitted to a histogram of the all values of
AB for the Googlewhacks used in the study.
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Heaps’ law parameters are measured more accurately for internet pages
independently, a more accurate measure for the other can be easily
calculated. In our study, we assume the Zipf law coefficient to be unity,
making this the largest study of Heaps’ law ever undertaken.
Previous studies using the internet have used text collections with under
20,000 pages – about 5 orders of magnitude less than the 8,000,000,000
pages used here (Heaps, 1978; Baeza-Yates & Ribeiro-Neto, 1999;
French, 2002).

Effective Index Sizes

We can get a bit more intuition for Equation (9) when we compare it to
our results from the basic (uniform) model, Equation (1):

AB � 1
I
¼ R;AB �

ðab� 1Þ2 I2ab � I
� 	

ð2ab� 1Þ Iab � Ið Þ2
¼ R:

The formulas differ only by a constant. We define a new constant to be:

1

Ieff2
¼
ðab� 1Þ2 I2ab � I

� 	
ð2ab� 1Þ Iab � Ið Þ2

so that
AB

Ieff2
¼ R: ð11Þ

This formula suggests an intuitive description of Ieff 2 as the effective
index size, the subscript 2 means it only applies to pairs of words. We will
derive and use Ieff 3 later.
Set a¼ 1 and b¼ 0.52:

ðab� 1Þ2 I2ab � I
� 	

ð2ab� 1Þ Iab � Ið Þ2
¼ 1

Ieff2
¼ 1

932; 260; 000
: ð12Þ

Googlewhack Plots

Since a Googlewhack has exactly one result, to test the theory we set the
expected number of results, R, to equal one and then plug in an empirical
value for Ieff2.
We make a log-log plot of the results for each word in a pair, A and B,

versus their ratio, A/B. That is, we plot log(A) versus log(A/B) and log(B)
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versus log(A/B). With this approach the points, in theory, should lie on
two lines, demonstrated as follows:
Since AB¼ I

logðIÞ ¼ logðABÞ ¼ logðAÞ þ logðBÞ

logðAÞ ¼ logðIÞ � logðBÞ:

Let

x ¼ logðA=BÞ ¼ logðAÞ � logðBÞ ¼ logðIÞ � 2 logðBÞ

y1 ¼ logðBÞ ¼ ðlogðIÞ � xÞ=2 ¼ log
ffiffi
I
p
� x=2

y2 ¼ logðAÞ ¼ xþ logðBÞ ¼ log
ffiffi
I
p
� x=2þ x ¼ log

ffiffi
I
p
þ x=2: ð13Þ

The results for the 351 Googlewhack pairs are plotted in Figure 4
along with the theoretical lines where these points should lie based on
Equation (13).

Application of the Model to Determining Relatedness of Words

Since

AB

Ieff2
¼ R ¼ expected number of results;

we are not only limited to Googlewhacks. We expect that word pairs in
which the words are closely related will show many more results than
expected from the random process of our model. Eight such pairs were
tested including the following queries: ‘‘Stairway Heaven’’, ‘‘Train
Station’’ and ‘‘Britney Spears’’.
Six hundred and ninety six other pairs were tested consisting of

combinations taken from the Googlewhack vocabulary.
The results are plotted in Figure 5. Each point represents data from a

word pair and is positioned where (x,y)¼ (AB,R). As usual, a log-log
plot is used. The formula for the solid line comes directly from
Equation (11),

AB

Ieff2
¼ R
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Fig. 4. A log-log plot of the number of hits for the first and second words that make up
Googlewhack pairs versus the log of the ratio of hits A/B. The lines represent where
the6(A) and þ (B) should lie theoretically for the Uniform model.

logðRÞ ¼ logðABÞ � log Ieff2
� 	

or

y ¼ x� log Ieff2
� 	

: ð14Þ

The points marked with circles are the ‘‘associated’’ words. That is,
these words are in some sense more related than randomly-chosen words.
Although they all lie above the line as they should (actual 4 expected),
they are not far away from the regular error. We define the ‘‘strength of
associativity’’ of a pair of words as log of the quotient of the actual
number of results and the expected number of results:

SA ¼ log
Ractual

Rexpected

� �
:
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The eight pairs and their corresponding values for SA are shown in
Table 2.
Another surprising result of the graph is the asymmetric distribution of

points around the theoretical line from Equation (14), with clearly more
points towards the left of this line. This asymmetry is more pronounced

Fig. 5. This figure plots the results for both words together versus the product of the
individual results. The solid line is the theoretical expectation of AB for a given result R.

Table 2. Hand-picked associated word pairs along with the number of results expected,
actual results returned by Google and the corresponding value for ‘‘strength of
associativity’’.

Word pair Actual results Expected results Strength of associativity

Paintable Paintability 635 1 2.780
Smashing Pumpkins 930,000 6442 2.159
Britney Spears 5,130,000 49,016 2.020
Stairway Heaven 893,000 35,151 1.405
Surge Protector 1,150,000 59,259 1.288
Paradigm Shift 3,400,000 761,719 0.650
Grand Slam 2,470,000 701,296 0.547
Train Station 16,700,000 8,755,605 0.280
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towards the lower portion of the graph where experimental results are
small. We leave the explanation of this for the discussion.

Extending the Model for Three or More Words

To extend the model to three word combinations we go back to Equation
(8) for p(i) and plug in the same value for I and our measured values for b
and a:

pðiÞ ¼ 1� ab
I1�ab � 1

� �
1

iab
¼ :48

I:48 � 1

� �
1

i:52
:

We then use the same linear approximation we did in the ‘‘Derivation of
the Model’’ section:

pðA;B;CÞ ¼ApðiÞ �BpðiÞ �CpðiÞ ¼ABC � p3ðiÞ �ABC � :48

I:48� 1

� �3
1

i:52

� �3

To find the expected number of results for the whole index, we take a
sum and approximate it with an integral to find R,

R ¼
XI
1

pðA;B;CÞ �ABC :48

I:48 � 1

� �3Z I

1

di

i1:56

¼ ABC
:48

I:48 � 1

� �3
1

:56I:56
� 1

:56 � 1:56

� �
¼ ABC1:072 � 10�15

R ¼
XI
1

pðA;B;CÞ �ABC :48

I:48 � 1

� �3Z I

1

di

i1:56

¼ �ABC :48

I:48 � 1

� �3
1

:56I:56
� 1

:56 � 1:56

� �
¼ ABC

31; 700; 0002
¼ 1

Ieff3
� 	2 :

Or:

Ieff3 ¼ 30; 370; 000:

We tested 89 word triplets and plot the results in Figure 6 at the same
horizontal scale as Figure 5. The solid line is the theoretical expectation
of ABC given R, based on the calculated value of Ieff 3¼ 30,370,000.
(x,y)¼ (ABC,R). This behaviour suggests that our initial linear
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approximations and general methods yield reasonable results up to
searches for groups of three words.
The solid line is the theoretical expectation of ABC based on the

calculated value of Ieff 3¼ 30,370,000.

The Dynamics of I and Ieff
Since both b and a are theoretically independent of the index size, we
expect them to remain constant even as the index grows larger. We can
solve for Ieff 2 in terms of I and vice versa by Equation (12).

ðab� 1Þ2 I2ab � I
� 	

ð2ab� 1Þ Iab � Ið Þ2
¼ 1

Ieff2

At the time of the first experiment (August 2005) Google’s homepage
displayed that it indexed around 8 billion pages. Since Yahoo’s claim to
have surpassed their index, Google has taken the number off to stress the
importance of their page-rank sorting method rather than the sheer size
of an index. At the time of the second experiment (April 2006) an
approximate size of the total pages indexed could be obtained by a

Fig. 6. This figure plots the results for all three words together versus the product of the
three individual results.
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wildcard search of the two characters ‘‘**’’, which returns this number.
At the time of the third experiment (June 2006) this trick no longer
worked.
We ran an experiment in April of 2006 with the same words that were

used 8 months earlier in August 2005 (described in the section
‘‘Application of the Model to Determining Relatedness of Words’’).
Google’s index had approximately tripled during the time between
experiments, growing from about 8 billion to about 25 billion based on
the wildcard search terms ‘‘**’’. To make the plots simpler, we considered
a range of values for the results of a search for two words (the y-values on
the graph in powers of 10, i.e. from 10n to 10nþ1) and computed the
geometric mean of the x-values (the product of AB for each point). The
new effective index size was calculated with Equation (12) (the value of I
was given from the Google website). In Figure 7, we plot the points along

Fig. 7. Using the data from the section ‘‘Application of the Model to Determining
Relatedness of Words’’, we considered a range of values for the results of a search for two
words (the y-values on the graph are in powers of 10, i.e. from 10n to 10 nþ1) and
computed the geometric mean of the x-values (the product of AB for each point).
A second set of results is also plotted in the same manner and for the same set of words
but 8 months later.
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with the theoretical line they should lie on based on Equation (14) for
August 2005 and April 2006.

Comparing Yahoo and Google

In August of 2005 Yahoo claimed its index had far surpassed Google’s.
Previous comparative studies have looked at the overlap of pages indexed
by search engines to determine which has the larger index (Bharat &
Broder, 1998). Our method determines the size of each index directly and
independently, thereby avoiding the bias of choosing a small set of data
to analyze. If we assume that b and a are the same for both engines, we
can put the Yahoo index to the test. Figure 8 plots the results in the same
manner as in Figure 7 except that the region in y that is grouped is no
longer from 10n to 10nþ1 but from some value q to q � 100.3 times the
region below it. By choosing an effective index value which fits both
curves reasonably, we show that both engines have approximately the

Fig. 8. In a similar manner to Figure 7, the geometric mean of word pair results is plotted
versus the geometric mean of the product of individual results for sets of point points
separated by power of 100.3. Results are for the same word pairs searched on both engines
at nearly the same time (in June 2006).
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same index size. The actual value of I can be found by plugging this
effective index size into Equation (11). The numerical solution puts I for
both search engines at around 28,000,000,000 pages as of June 2006.
One difficulty in comparing search engines in this matter arises from

changes in the Zipf law parameter a, given that b will be expected to stay
the same as it is a function of the English language alone. Normally
search engines only index pages up to a certain number of kilobytes
(Bondar, 2006). This would put a cap on the page length and ruin the
Zipf distribution making it look more uniform, the effective value of a
would be smaller, which would then make Ieff 2 look more like I. This
would push the data points in Figures 5 to 8 to the right. Since Yahoo
and Google may have different values for this cap on page size, this
comparison may not be entirely fair.

DISCUSSION

While these results appear promising we are left with a few pressing
questions. Can we quantify the wide spread of results around the peak
probability, and can we explain the distinct asymmetry of this spread
toward lower numbers of results (see Figure 5)?

Validation of Approximation for Exact Probabilities

We begin with Equation (2) which will return the exact probability
density function (PDF) for the number of results when words with
individual results A and B are spread on I equal pages. Next we plug in
Ieff 2 for I, and examine the width of the peak to determine if our error is
reasonable.
We verify the validity of this step with the computational model as

shown in Figure 9.
Simulations were performed for the particular case of A¼B¼ 40 and

I¼ 300 with ab¼ 0.52. The number of times both words appeared on the
same page was recorded. The solid line gives the discrete PDF found
based on these simulations. The dashed line is the approximate PDF with
Ieff 2 plugged into Equation (2) for I. For the same reasons as explained
earlier, this approximation is only valid when A, B� I. We see from plots
like these that the width of the peak in the simulation is similar to the
width derived based on the model. The main difference between the two
curves is that the theoretical curve is shifted to the right of the simulation
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curve. This shift quickly becomes negligible as A and B become small
fractions of I and so this approximation is valid for our purposes.

Expected Results and Corresponding Asymmetry

A quick study shows that this peak shown in Figure 9 is always very
sharp for large I. This is not surprising because functions with factorials
often have very sharp peaks (as in statistical physics). To demonstrate
this with an example, we consider the word pair ‘‘Psychometric’’ and
‘‘Carpaccio’’. Summing probabilities (using Equation [2]) shows the
number of results should be somewhere between 600 and 800 with
99.99% probability. The actual number of results returned was 12.
Differences like this are not uncommon.
In Figure 10 we plot the data points collected for the same type of

experiment for the same word pairs as in Figure 5. In the same plot we
present a contour plot for the theoretical probabilities computed from
Equation (2) with Ieff 2. For the sake of simplicity we use A¼B in

Fig. 9. The discrete probability density function (PDF) determined with the computa-
tional model is plotted as a solid line next to the approximate PDF using the effective
index from Equation 11 values for I in Equation 2 for the exact probabilities in a uniform
distribution. The values used were: A¼B¼ 40, I¼ 300, ab¼ 0.52.
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Equation (2) which will give us the widest possible distribution in R for a
given value of the product AB. It is clear from the figure that many of the
points lay in regions with very low probabilities. The regions outside the
contour lines have a probability lower than 10715.
We will now discuss the symmetry of the points and return to the

description of these errors later.
It is clear in Figures 5 and 10 that the points are not spaced

symmetrically around the (solid) theoretical line. Word pairs with a low
product of individual word results appear to have much higher results
together than expected (many points lie above the theoretical line). The
reason for the asymmetry is two-fold. First the asymmetric data springs
directly from an asymmetric probability distribution as the contours in
Figure 10 indicate. Also, since Googlewhacks are often rare words, the

Fig. 10. The discrete probability density function determined with the computational
model is shown as a contour plot below the experimental data points. The regions outside
the contours have a probability lower than 10715. Associated word pairs are marked as
circles.
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majority of the words from the experiment had low results. A full quarter
of the word pairs had expected and exact results of essentially zero. While
this effect is not enough alone to explain the appearance of points in
sections with values corresponding to absurdly low probabilities, the
tendency can be exaggerated by the error-increasing effects we will
discuss next.

Strength of Associativity

We have assumed that the probability of a word appearing on a page is
largely independent of the word in question. It is entirely possible that
two words are so disassociated from each other that the presence of
‘‘Zugzwangs’’ on a page (for example) reduces the probability that
‘‘Plankton’’ will be on it as well. One word increasing the probability of
another occurs quite frequently, as we have seen with the tests of
associated words. If this is the largest reason for error, then in fact it is
not error at all, simply an accurate test of ‘‘strength of associativity’’.

Some Little-Known Google Attributes

In order to carefully test our model, we have compared it to responses
given by Google, results we have assumed to be approximately correct.
Google always displays ‘‘approximate results’’ for large returns, the
variation from expected results in our experiments is often far above this
precision level.
It is important to note that there is a difference between what we call a

result, and a result which Google returns. Google’s algorithm is more
suited to practical searching than linguistic research. A search for the two
words ‘‘miserable’’ and ‘‘failure’’ together became famous for giving the
whitehouse.gov biography of George Bush as the first hit while neither of
those words appears on that webpage. It appeared as a hit because a large
number of sites linked to the biography with ‘‘miserable failure’’ in the
anchor text.
We have considered two methods to test the size of these effects and to

show that the deviation from predictions is sufficient to explain the
differences we have found between our experimental and theoretical
results. The most direct way is to switch the order of the search terms.
For example, in February 2008, searching for ‘‘Goddamned Toolboxes’’
returned 333,000 results but ‘‘Toolboxes Goddamned’’ returned only
37,500. Since the word order does not affect the total number of pages
they actually appear together on the number of results should have been
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the same. Further testing revealed that for various word pairs these two
values are off by a factor of one and a half times, on average.
Another method makes use of Google’s advanced search options. The

set of pages with ‘‘miserable’’, but without ‘‘failure’’ can be found by
searching for ‘‘miserable – failure’’. We will denote the number of pages
in this set as {a – b}, the number of pages with both the words as {a b}
and the number of pages with just the first word as {a}. In this case the
following formula should hold:

a� bf g þ b� af g þ abf g ¼ af g þ bf g � abf g

or:

1=2ð Þ af g þ bf g � a� bf g � fb� agð Þ ¼ abf g

Comparing the result from this test with the actual result from Google
for {a b} shows that most values on either side of the equal sign are off by
around a factor of 102.6 with some off by as much as 105.6. Although this
short test does not directly correlate to the problem at hand, the order of
magnitude of the change implies that there may be similarly-sized
changes for the results used in our experiment. This difference is more
than enough to explain the wide distribution we found in our
experiments.

CONCLUSION

We have developed a model to predict the number of results that should
be returned by a pair of words entered into the Google search engine
based on the Zipf law for the distribution of website text sizes, and
Heaps’ law for the vocabulary size in those documents. We use data from
351 word pairs that return exactly one result to easily measure the Heaps’
law parameter b¼ 0.52 for a library of over 8 billion pages.
We demonstrate the validity of our methods by obtaining reasonable

results after extending the model to word triplets. We also confirm the
model over a period of 8 months during which the Google index size
tripled. We then compare the index sizes of the two competing search
giants Yahoo and Google and find that they both have about the same
index, a size that we estimate to be around 28 billion pages. This
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information is no longer public but we believe we are the first to have a
method of measuring this indirectly.
We mention that tests we have conducted show that internet searches

for random numbers return approximately log-normally distributed
results and sorting by first digits yields results that follow Benford’s law
(1938). This is an area of study of internet behaviour that is worth further
investigation.
Potentially the most useful part of our paper is our simple method for

automatically determining the ‘‘strength of associativity’’ of various word
pairs. This test requires a tiny amount of computational power and can
thus be used for a huge list of word pairs in a short time or for single
word pairs with immediate results. The time to test each pair is essentially
limited only by the time required for three Google searches (fractions of a
second). A more accurate model will, of course, result in a more accurate
value of ‘‘strength of associativity’’.
We identified that the main deviations from the model derive from

idiosyncrasies in how Google returns results. Future models must take
into account reasons for this, such as results returned because of linking
anchor text rather than the text on the given page. It may be possible to
extrapolate the real number of results from a clever combination of
searches using the advanced search options. Such a model would provide
more accurate measures for all the values determined in this paper,
including the Heaps’ law parameter, index size, and ‘‘strength of
associativity’’.
As the Internet continues to grow, it will be interesting to see whether

the Zipf’s and Heap’s law parameters determined in this paper will
change. A more detailed comparative study can be easily performed
using Google’s advanced search options to determine the parameters for
specific languages or countries. We are fortunate that the advent of the
internet has made studies like these efficient, where they would have been
impossibly difficult to even consider as little as 10 years ago.
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